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Conductivity exponents in stick percolation
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On the basis of Monte Carlo simulations, the present work systematically investigates how conductivity

exponents depend on the ratio of stick-stick junction resistance to stick resistance for two-dimensional stick
percolation. Simulation results suggest that the critical conductivity exponent extracted from size-dependent
conductivities of systems exactly at the percolation threshold is independent of the resistance ratio and has a
constant value of 1.280*0.014. In contrast, the apparent conductivity exponent extracted from density-
dependent conductivities of systems well above the percolation threshold monotonically varies with the resis-
tance ratio, following an error function, and lies in the vicinity of the critical exponent.
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Stick percolation, considered for the first time by Pike and
Seager in 1974 [1], has been extensively studied theoretically
as an important representative of continuum percolations
[2-7]. Recent demonstrations of thin films of networked con-
ducting rodlike nanoparticles, such as silicon nanowires [8]
and carbon nanotubes [9], with promising applications in
electronics, optoelectronics, and sensors [10-13], have moti-
vated an increasing interest in stick percolation. On one
hand, stick percolation has been employed aiming at unveil-
ing the underlying physics of the device performance [14,15]
and exploiting new device structures to improve the perfor-
mance [16]. On the other hand, the rodlike nanoparticles are
also in turn used as a model system for study of stick perco-
lation from the experimental viewpoint [17].

Despite the rising interests in stick systems, some critical
behaviors in stick percolation have not yet been well under-
stood and remain to be explored. An example concerns con-
troversial conclusions found in the literature for the depen-
dence of conductivity exponent ¢ on the ratio of stick-stick
junction resistance (R;) to stick resistance (R,), i.e., R;/R,.
Balberg et al. [2] derived for the first time the conductivity
exponent for two-dimensional (2D) stick systems as ¢
=1.24=*+0.03 in agreement with the universal value f,
~1.30 for lattice percolation [18]. In addition, calculations
that assigned only one resistivity value to the sticks or one
resistance value to the junctions were found to yield consis-
tent values for ¢ within “experimental uncertainty.” [2] On
the contrary, by studying the conductivity of carbon nano-
tube networks, Hecht et al. [19] proposed that ¢ for a stick
percolation system should vary with R;/R; from O to the
universal value 7; r approaches 1, when R;> R, and ¢ is equal
to 0 when R;<R,. The latter was argued to hold by consid-
ering the following. When R; <R, cutting each stick in half
would decrease the stick length but would not change the
system conductance since R; is negligible. The conclusion of
this oversimplified theoretical treatment is that the system
conductance is independent of the stick length and hence ¢
should be 0. Apparently, how ¢ would depend on the resis-
tance ratio R;/R, remains to be confirmed. In the present
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work, we will clarify this dependency based on precise re-
sults of extensive and systematic Monte Carlo simulations.

There are usually two schemes for studies of ¢ in a perco-
lation system. The first method evaluates the size depen-
dence of conductivity. According to the finite-size scaling
law, the average conductivity (o) is expected to vary with the
system size L as [20,21]

(@) =b7"c) +cafo(b) + -], (1)

when the stick number density N is equal to the critical den-
sity N.. Here, b=L/l, with [ being the stick length, ¢; and ¢,
are constants, v is the correlation-length exponent, and f,(b)
is the leading correction function with f,(b)—0 for b— .
This method is favored by theorists and is expected to pro-
vide a reliable value for critical exponent z.

The second method relies on the density dependence of
conductivity. When N approaches N, the conductivity o of a
stick system varies as

o (N=N,). ()

Note that Eq. (2) is true only when L> ¢ where &x|N
—N,|™ is the correlation length [18]. As N approaches N, in
a finite-size system, there are always finite-sample errors
even for very large systems due to the divergence of £[2,21].
Rigorously speaking, it is problematic to employ Eq. (2) for
extraction of an appropriate value of 7 for finite-size systems.
Nevertheless, it is applicable for extraction of the apparent
conductivity exponent 7 by collecting data at N above, but
not very close to, N,. If N is still within the critical region, 7
is an approximation of 7 [2]. When N is well above N,,
though not critical, 7 can be of particular interest for materi-
als science and electronics involving carbon nanotube net-
works and nanotube-polymer composites [13,22,23].

It is worth noting that in the previous literature concern-
ing stick percolation, 7 and 7 are not carefully distinguished
from each other, since few works have employed Eq. (1) to
study conductivity exponent. The present work investigates
the R;/R; dependence for both ¢ and 7. Two-dimensional
widthless isotropic stick percolation is considered on square
systems with free boundary conditions. The free boundary
conditions are specified in this work just because such stick
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systems are more consistent with the finite-size rodlike nano-
particle networks in practice. Each stick has a fixed length
/=1 and is centered on a specific site with a given orienta-
tion. The system percolates when its left and right boundaries
are connected by at least one continuous path consisting of
intersecting sticks. The main task is to calculate the conduc-
tivity of the percolating system at the critical density N, with
different system sizes L or at different stick density N with
the same system size L. The simulations are carried out as
follows. First, n (n=NL?) sticks are produced through ran-
domly generating n uniformly distributed sites (x,y) on the
square system for their centers and n random angles 6 with
respect to the horizontal direction for their orientations. Note
that 0=x=L,0=y=L, and 0= #<. Second, the connec-
tivity property of the sticks is determined. When two sticks
intersect at a position between the left and right boundaries
of the system, an internal junction is created at the intersec-
tion. When a stick intersects with the left or right system
boundary, an external junction is created at the intersection.
Third, the percolation status is checked for the system. If the
system is percolating, all the junctions along the percolation
path(s) are marked as “active” junctions. Last, Kirchhoff’s
current law (KCL) is applied at every active internal junction
in order to calculate the system conductivity o. All sticks
have a fixed resistivity p. All the internal junctions have a
fixed resistance R; whereas the resistance for all the external
junctions is 0. The electric potentials at all active external
junctions connecting the left (right) system boundary are set
to V=0 (V=1). Each active internal junction is associated
with two electric potentials, V; and V;, corresponding to the
electric potentials of the two sticks at the junction position.
Since the internal (stick-stick) junctions are of a finite con-
ductance, V; is usually not equal to V;. Then, the equations in
terms of KCL are written for both V; and V; at every internal
active junction. By solving these equations, o can be readily
represented by the sum of currents flowing into (out of) all
external junctions connecting the right (left) boundary. In
order to exclude the effect of statistical uncertainties and
investigate the intrinsic dependence of conductivity expo-
nents on R;/R; (R;=pl), for each simulation realization, the
internal junctions are associated with a series of different
resistances R; and the system conductivity o is calculated for
each R;. Therefore, one can obtain o of exactly the same
stick system but with different resistance ratio R;/R;.
Several optimizations have been performed in this work
in order to improve the simulation efficiency. During the
determination of the connectivity property of the sticks, each
stick is first registered into a subcell (a square of unity
length) in which its center lies. It is only necessary to check
the connectivity property between a chosen stick and any of
those belonging to the same subcell or the neighboring sub-
cells [24]. Before applying KCL to establish systems of lin-
ear equations for the active internal junctions, all dangling
sticks along with the corresponding junctions that do not
carry any current [ 18] are erased. Finally, since the matrices
corresponding to the established systems of linear equations
are sparse, symmetric, and positive definite, the precondi-
tioned conjugate gradient method (with Jacobi precondi-
tioner) [25,26] is implemented to solve such large systems of
linear equations in an iterative way. These optimizations en-
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FIG. 1. (Color online) Normalized arithmetic means (o) (sym-
bols) and standard deviations (error bars) of the batch arithmetic
(M), geometric (@), and harmonic (A) mean conductivities of stick
systems at N.=5.637 26 with b varying from 4 to 100, plotted as
—In({0))/In(b) against 1/In(b), for (a) R;/R;=107, (b) R;/R;=1,
and (c) R;/R,= 10°. The intercepts yield #/v. Solid curves are robust
fittings to Eq. (3) with f,(b) being either the logarithmic or the
power correction. In order to exhibit all the data clearly, the (o)
have been normalized.

able us to perform simulations of relatively large systems for
stick percolation.
A convenient way to extract ¢ is to rewrite Eq. (1) as

In{o) ot In[c; + cyf5(D) + - -]
T b v Inb ’

3)

Therefore, plotting —In{c)/In b against 1/In b can give /v
as the intercept. Figure 1 shows such plots of some of our
simulated conductivity for different R;/R; at the critical den-
sity N.=5.637 26 [24]. Note that the simulated conductivity
of stick percolation at N, varies so much among individual
realizations that, even with a large number of realizations,
the relative standard deviations for the three kinds of mean
(arithmetic, geometric, and harmonic) conductivities are all
typically around 30-50 %. This phenomenon is different
from that in lattice percolation [20,21] where the relative
deviations are usually less than 1%. Such large deviations
make the extraction of #/v lack of physical meaning. How-
ever, it is also found that all three mean conductivities are
rather stable when the number of realizations is sufficiently
large. Therefore, five batches of simulations were performed
for every b, each of which consists of over 6 X 10°/b* per-
colating realizations. In this work, b=4, 5, 6, 7, 8, 9, 10, 12,
14, 16, 18, 20, 25, 30, 40, 50, 60, and 100. The final results
are represented by arithmetic means and standard deviations
for the three different mean conductivities of the five
batches, as shown by the symbols and error bars in Fig. 1,
respectively. All the relative standard deviations are less than
5% and the mean conductivities are thus expected to be re-
liable for further data analysis.

In order to extrapolate the data to b= and obtain the
intercept t/v, nonlinear regressions with robust fitting
[25,27] have been performed with specific correction func-
tions f,(b). As usual [20], both the logarithmic correction
f2(b)=1/In b and the power correction f,(b)=b"" are uti-

021120-2



CONDUCTIVITY EXPONENTS IN STICK PERCOLATION

0.98 ' ' ' = " Arithmetic
e Geometric
0.97F 4 Harmonic |
2096} % } } 1
094 L L L L L
-6 -4 4

2 0 2
log ] O(Rj/RS)

FIG. 2. (Color online) R;/R; dependence of /v extracted from
the three kinds of mean conductivities in terms of Eq. (3). Error
bars represent the 95% confidence intervals. Horizontal dashed line
represents the Alexander-Orbach conjecture.

lized. If only the smallest chi-square (x?), the sum of the
squared residuals weighted by the reciprocal deviations [25],
is preferred, the power correction is superior, with the order
w varying from 0.5 to 4. However, the mere pursuit of the
smallest x? is not absolutely reasonable since it causes rela-
tively large variations among the extracted #/v from the three
mean conductivities and hence also makes it difficult in iden-
tifying the true value. Consequently, no preference is put to
power correction or logarithmic correction in this work. Both
of them are investigated for all three mean conductivities and
the optimal set of corrections is determined as those produc-
ing the minimum variation among the three extracted #/v and
still of comparable x? to the minimum one. The variations
are measured by the standard deviation of the three extracted
t/v, weighted by the reciprocal of the uncertainties. The solid
curves in Fig. 1 represent the fitting results with the optimal
sets of corrections. In Fig. 1(a), the optimal set follows this
order: power (w=0.9), logarithm, and power (w=1.1) for
arithmetic, geometric, and harmonic mean conductivities, re-
spectively. In Fig. 1(b), it is power (w=0.7), power (w
=1.6), and power (w=2.4), and in Fig. 1(c), it becomes
power (w=3.6), power (w=2.4), and power (w=2.9).

Figure 2 plots the extracted /v against the resistance ratio
R;/R;. It is clearly shown that ¢/v is independent of R;/R;.
With R;/R; varying from 107 to 10°, the variation of #/v is
within the experimental uncertainty region. Taking the
weighted (by the reciprocal of uncertainties) arithmetic mean
of all the measured ¢/v as the final result, we obtain ¢ in stick
percolation as

t/v =0.960 *+ 0.010. (4)

Here, the uncertainty is estimated to cover most of the error
bars in Fig. 2. This value is consistent with, but slightly
lower than, those precise results (around 0.970) reported for
lattice percolation [20,28]. As a result of great challenges in
calculating conductance for large-size continuum systems,
this work considers a few large-size systems. As each of
them is of a small number of realizations due to limited
computational capacity, relatively large deviations are antici-
pated. Therefore, the x? fits put less weight to the large-size
systems, which can be inferred from Fig. 1 where the data
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FIG. 3. (Color online) Three mean conductivities as a function
of (N-N,)/N, for stick system of »=20 and with R;/R;=10". Error
bars represent the corresponding standard deviations over all
(~1000) individual realizations. The slope of the fitting line gives 7.

points for the largest b deviate obviously from the fits. This
might result in a slight underestimation of ¢/v in this work.
However, most of the #/v values in this work are evidently
higher than the Alexander-Orbach conjecture of #/v=91/96
~(.948 for 2D percolation [20,28] (shown as a horizontal
dashed line in Fig. 2). Hence, this work also invalidates the
conjecture from the view of continuum percolation. By tak-
ing v=4/3, which has actually been implicitly demonstrated
in our previous study on finite-size scaling of stick percola-
tion [24], we finally obtain the critical conductivity exponent
independent of R;/R; as

1=1.280 = 0.014. (5)

This value is in better agreement with the universal critical
exponent f.

In order to study the dependence of 7 on R;/R;, conduc-
tivities were calculated, as an example, for stick systems of
size b=20 with different R;/ R at N well above N,. Figure 3
shows the simulation results for R;/R;= 1073, Different from
those obtained exactly at N, the conductivity deviations
among individual realizations become smaller with increas-
ing N. The symbols and the error bars in Fig. 3 represent,
respectively, the true mean conductivities and standard de-
viations calculated over ~1000 individual realizations.
Through linear robust fitting of Eq. (2) to the data in the
log-log plot, 7 can be obtained as the slope of the fitting line.
Figure 4 explicitly displays the dependence of 7 on R;/R;. It
becomes immediately clear that 7 is larger for R;-dominant
(R;j/R;>107%) systems than for R,-dominant (R;/R;<107%)
systems. This difference in 7 is considered reliable since it
has already gone far beyond the uncertainty region. In addi-
tion, 7 monotonically increases with increasing R;/R,
throughout the range of R;/R; and can be well described by
the error function below

f(x) =7, + A erf(x), (6)

where x=logo(R;/R,), 7, and A are constants, and erf(x) is
the error function. The robust nonlinear fitting of all the data
in Fig. 4 gives 75=1.314+0.002 and A=0.108 == 0.003. Note
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FIG. 4. (Color online) R;/ R dependence of 7 extracted, in terms
of Eq. (2), from the three kinds of mean conductivities for stick
system of b=20 and with (N—N,)/N,. between 0.3 and 1. Error bars
represent the 95% confidence intervals. The curve is the robust
fitting to Eq. (6).

that 7, and A vary with the density region. In this work, we
are only interested in the density region of 0.3<<(N-N,)/N.,
<1, since only when (N-N,)/N.>0.3, the extracted 7 from
the three kinds of mean conductivities agree well with one
another, while on the other hand, too high a density tends to
pull the systems far away from the critical region. The inclu-
sion of the lower-density region causes poor consistency
among the three extracted 7. However, if N is not too low,
each of the extracted 7 still follows the error-function depen-
dence as expressed by Eq. (6).

It has now become apparent that the R;/R; nondepen-
dency found by Balberg et al. concerns the critical exponent
¢ while the R;/R; dependency proposed by Hecht er al. is
valid for the apparent exponent 7. Qualitatively, Eq. (6) co-
incides with the proposal of Hecht er al. in that 7 decreases
with decreasing R;/R,. However, this dependency expressed
by Eq. (6) has a different interpretation. When a stick system
is well above the percolation threshold, its percolating clus-
ters have already been well established. In this case, adding a
new stick to the system will not significantly change the
cluster structure. But if the sticks are all very conductive and
the system conductance is governed by the junction resis-
tance (i.e., R;>R,), adding a stick can shortcut many junc-
tions in a cluster and thus significantly increase the system
conductance. As such, the system conductance can be very
sensitive to the stick density, that is to say, 7 is large. As
revealed in Fig. 4, 7 can even be greater than f,. On the
contrary, if the sticks are all poorly conducting so that the
system conductance is dictated by the high stick resistance
(i.e., R;<R,), adding more sticks only leads to negligible
conductance changes to the system and hence low values of
7 are expected. Similarly, the R;/R, nondependency of ¢ can
be readily understood. Exactly at the percolation threshold,
the percolating cluster of a system is critical. Adding a stick,
no matter whether of high conductance or of high resistance,
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tends to impact the cluster backbone and therefore lead to
significant conductance changes of the system. As a result, ¢
is insensitive to R;/R;.

Furthermore, our results do not quantitatively support
Hecht’s assumption of 0 =<7=1,,. As shown in Fig. 4, all 7 are
still around the critical exponent ¢. The upper limit of 7 can
be definitely greater than ¢, while there is no indication for 7
to approach 0 when R;<R;. A question here is then how one
should correctly address the oversimplified theoretical treat-
ment by Hecht et al. leading to 7=0 for R;<R;. Cutting a
stick into two without permitting the latter to reallocate or
reorient relative to each other imposes implicit constraints to
the stick system in consideration. Such a stick system is cor-
related and the assumptions for isotropic stick systems no
longer apply. In isotropic systems, the two half sticks should
indeed be allowed to change their locations and orientations
in a random fashion.

Finally, it is also worth pointing out that a major reason
for the previously reported [13,23] large deviation between
the experimentally extracted conductivity exponents and the
critical one is likely due to data acquisition in the stick den-
sity region far above the percolation threshold. Conse-
quently, the extracted exponents should correspond more to
the apparent exponent than to the critical exponent.

In summary, Monte Carlo simulations with proper optimi-
zations have been performed to study the conductivity of 2D
isotropic stick percolation systems with size up to 100. The
dependence of conductivity exponents on the junction-to-
stick resistance ratio R;/R; is systematically investigated.
Simulation results indicate that the critical conductivity ex-
ponents extracted from size-dependent conductivities of sys-
tems exactly at the percolation threshold are independent of
R;/R,. By varying R;/R; in a wide region from 1073 to 10°,
the critical exponents are all found at 1.280*+0.014. How-
ever, the apparent conductivity exponents extracted from
density-dependent conductivities of systems well above the
percolation threshold are significantly dependent on R;/R.
This dependency can be well described with an error func-
tion of the logarithm of R;/R,. In the investigated density
region of the present work, these apparent conductivity ex-
ponents vary within a narrow band near the critical conduc-
tivity exponent, disagreeing with previously reported as-
sumptions. These results are considered valuable for
theoreticians working on continuum percolation and useful
for experimentalists interested in materials of rodlike nano-
particles as well as the electronic and optoelectronic devices
based on such materials.

The simulations in this work were performed on the com-
puter clusters, Ferlin, Key, and Lenngren, at the Center for
Parallel Computers (PDC) of KTH. This work was finan-
cially supported by Swedish Agency for Innovation Systems
(VINNOVA) (Contract No. 2005-01138) and Swedish Re-
search Council (VR) (Contract No. 2009-8068).
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